- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Haynes, Christy L (2)
-
Jilani, Safia Z (2)
-
Lewis, Riley E (2)
-
Spanolios, Eleni M (2)
-
Caldwell, Rhea N (1)
-
Li, Fangjia (1)
-
Muenter, Heather N (1)
-
Orr, Galya (1)
-
Stitgen, Abigail M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reactive oxygen species (ROS) are common cellular oxidants that when overproduced by cellular stressors cause harm to cells. Detection of ROS is of utmost importance to understanding a wide variety of cellular function and toxicity mechanisms. Conventional ROS fluorescence assays involve using a single dye to visualize the ROS quantity. Herein, we describe ROS-sensitive, fluorescent-dye-incorporated carbon dots with dual fluorescence capabilities and good biocompatibility. Carbon dots (CDs) made of citric acid and urea were synthesized with incorporated cyanine-3-amine (Cy3), a bright red fluorescent dye, to create Cy3-CDs. To get Cy3 into the ROS-sensitive form, this work demonstrated that Cy3 alone and Cy3 within carbon dots can be electrochemically reduced to their colorless ROS-sensitive form. Cy3, CDs, and Cy3-CDs are all responsive to additions of superoxide, leading to an increase in the fluorescence. Overall, this work examines how O2•– and additional oxidizers interact with CDs, Cy3, and Cy3-CDs, and molecular-level hypotheses are explored that will inform the design of future carbon dot-based ROS sensors.more » « lessFree, publicly-accessible full text available July 14, 2026
-
Spanolios, Eleni M; Lewis, Riley E; Caldwell, Rhea N; Jilani, Safia Z; Haynes, Christy L (, Chemical Communications)Reactive oxygen species (ROS) can be quantified using fluorescence, electrochemical, and electron paramagnetic resonance spectroscopy techniques. Detection of ROS is critical in a wide range of chemical and biological systems.more » « less
An official website of the United States government
